
International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May-2015 441
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

Some Aspects of Software Quality Assurance for
Small Projects

A. Spiteri Staines

Abstract— Agile and lightweight software based projects have requirements that are not always easily identified because they are not
always well developed and documented in the same way large projects are documented. This work presents some aspects that can be
included to improve these projects in a semi-structured approach.

Index Terms— Agile Methods, Best Practice Approaches, Quality Assurance, Quality Measurement, Lightweight Methods, Model Driven
Engineering, Project Management, Software Engineering.

——————————  ——————————

1 INTRODUCTION
n the past decades the aspects of software quality have been
given considerable importance. Software quality is not
something straightforward to quantify and assess compared

to other measurements used in engineering.
Quality assurance is a bit of a paradoxical topic. If quality con-
trol is left to the later stages of development rather than hav-
ing an ongoing quality process, serious unsolvable problems
can arise [1]-[3].

Software is not a tangible product like hardware. It is not
easily defined and represented. The definition of quality is
quite abstract. Thus putting together software and quality cre-
ates a topic that is not so clear and straightforward. As a mat-
ter of fact software quality is very abstract and difficult to
measure. The diverse types of systems and software applica-
tions and requirements engineering topics all contribute to
increasing this complexity [4],[5]. In simple terms there is no
absolute measure of software quality. Some fundamental
questions can be asked about software quality [6]: i) when is
the best time to influence software quality, ii) who should be
responsible for software quality assurance, iii) which methods,
metrics or approaches can we use or combine to measure the
quality factors, iv) which stakeholders shall we involve. v)
which quality measures can be involved in the process.

For small IT projects agile methods have certain advantages
and important uses. Agile methods can be compared and
combined with a direct approach that in a certain sense is
more specific and straightforward. A fundamental argument
on reasoning about the system implies that the system is an
engineering solution or product that resolves a particular
problem. The system is composed of software, and also the
users, stakeholders, networking etc. The behavior of the sys-
tem must be predictable and must satisfy the customer’s
needs. In fact the system has to add value to the customer’s or
user’s process and meet a particular user’s need or specific
problem. Software quality assurance is not just limited to the
software artifact but it is also part of the process. Software
quality assurance from a wider perspective involves different
entities and dimensions that are often overlooked [7],[8].

2 BACKGROUND INFORMATION
2.1 Basic Quality Assurance Objectives
In this section, some very basic software quality assurance
objectives are given [1],[2]. Software quality can be identified
in i) the process and, ii) the product. Some of the main quality
assurance objectives are: i) system/software development
should meet the needs of all users, ii) the system is consistent
with the needs of other users, iii) system goals are consistent
with those of the customers and the organization, iv) the sys-
tem should clearly meet certain security specification stand-
ards imposed by government, industry, competition or busi-
ness domain [6], v) the software is developed at a suitable
economic cost, vi) the errors in the development should be
minimized, vii) there should be no need for rewriting program
code or parts of the system, viii) the customer should be satis-
fied with the process and development taking place [3],[4]. It
is obvious that these objectives are loosely defined and on
their own do not give a clear indication of how they should be
achieved in practice. Unfortunately different projects have
different objectives, creating difficulties in selecting what is
important.

2.2 Intangible Quality Assurance Objectives
Quality assurance intangible objectives relate to the perfor-
mance of the system [1]-[3]. Some objectives are: i) economical
ones that imply that the system cost is minimized, ii) effec-
tiveness that imply that the system accomplishes the required
tasks with the least effort, iii) maximizing throughput or use.
The basic quality assurance objectives mentioned, can be con-
sidered to be intangible, because there is no single way of
measuring them.

2.3 Quality Assurance in Traditional Software
Development

Traditional system development had quality assurance plans
that fell under the responsibilities of a quality assurance group
[1]. Such a setup however is not particularly well suited to
small projects. However this can be included as part of an or-
ganizational setup where a specific group of the organization
is responsible for quality and standards assurance from a wide
perspective. Many lessons learned from quality assurance in

I

————————————————
• Anthony Spiteri Staines is lecturing in the Department Of Computer

Infortation Systems at the University of Malta

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May-2015 442
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

traditional development like those related to product quality,
timeliness, design, documentation, standards, etc. can be easi-
ly applied to smaller projects.

2.4 Agile Methods
Agile methods are based on creating systems and software

artifacts that add value. The concept of service oriented archi-
tectures is based on these concepts [5]. Techniques and ap-
proaches like agile are directed towards solving problems in
software quality. However the actual way of doing this is not
always clear. The use of modern improved platforms, virtual
machines, integrated environments, frameworks, collaboration
software, version control mechanisms, configuration man-
agement systems, error tracking, traceability, etc. can dramati-
cally improve the software process and product. Problem
structuring and modelling at an architectural level could be
useful.

3 PROBLEM DEFINITION
The problem is how to have real quality assurance in small
projects. This is nothing short of a simple task. Quality
measures imply specific tradeoffs between different attributes.
Measurement is not so straightforward and accurate but just a
guideline. The main key concepts can be summarized into
three main points. These are i) trust, ii) dependability and iii)
cost minimization.

Trust implies that system users exhibit a certain amount of
familiarity and comfort with the application that they use or
are entrusted to use.
The concept of trust does not necessarily imply that a system
is reliable or efficient. Trust is a mental process that cannot be
measured using normal means because for the user, this value
lies in his mind and is very vague or difficult to define. Trust
is an intangible measurement and many of the measurements
used for software quality try to measure some basic aspects of
trust. Some indirect indicators or pointers of trust in the sys-
tem can be obtained by the amount of use of the system and
the number of entities that use it.

Trust can be seen in the process of systems development
where the stakeholders influence the whole process of devel-
oping the artifact. This type of trust again is quite complex and
can be the result of many issues like the notations used for the
design, the tools or frameworks being used for development,
the level of confidence in the programmers and many other
facts. E.g. if a new system is being developed by a new com-
pany this can cause a particular reaction. Obviously a good
level of trust will instill a certain amount of confidence in the
end result.

The second quality is dependability. This is based on trust,
however this can be measured to a better extent. Dependabil-
ity is not determined by the level of trust and vice-versa. De-
pendability implies that a system does exactly what it is sup-
posed to do. I.e. it meets the users or stakeholders criteria per-
fectly. In the case of the software artifact, this has to take place
without failures and problems. Dependability is measureable
by the robustness or reliability of the system. But dependabil-
ity is more abstract and difficult to measure than reliability.
Quality assurance plans seem to be more oriented towards

dependability rather than trust. This happens because many
metrics are defined for measuring performance. Performance
depends on the smaller measures of effectiveness and efficien-
cy. These are easier to measure because they can be based on
numeric data that is logged off from the system. The issue of
dependability affects both the process and the product of
small projects. Software development has to be a dependable
process. Dependability relies upon quality culture and a best
practice approach. A certain level of dependability is achieved
after a number of years. This can be seen from the principles of
the capability maturity model (CMM).

Cost minimization implies that the process and the artifact
take place with proper cost control. Resources cannot be un-
derutilized. Cost minimization is an economic principle. It
results from proper quality control mainly in the software de-
velopment process. This implies that the artifact produced
does not require an excessive amount of rework or mainte-
nance. The cost required for developing quality beyond a cer-
tain level becomes prohibitive. A required level of confidence
has to be agreed upon prior to the development stage. Having
requirements that are properly specified does not automatical-
ly imply that the best tradeoff of cost vs good requirements is
achieved.

Some typical problems for small projects are: i) certain
goals might only be achievable in the future. ii) it is difficult to
predict defect rates.

4 PROPOSED SOLUTIONS
Improving software quality cannot be done by using prede-
fined quality assurance methods. This is because each project
has differences in size and requirements. Each problem is
unique and will require a specific attested form of problem
solution to it.

A two fold solution can be proposed. i) Keeping sufficient

SOFTWARE QUALITY

MEASURABLE
(METRIC BASED)

QUALITY

UNMEASURABLE
(PERCEPTION BASED)

QUALITY

Fig. 1. Measurable vs Unmeasurable Software Quality. This fig. briefy
states that software quality can be i) measured or ii) perceived in the
user’s mind.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May-2015 443
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

factual data and information about software projects, ii) Iden-
tifying appropriate strategies.
The first part of the solution to the problem lies in keeping
sufficient historic records, factual data and information. In
other fields of study like business and organization manage-
ment statistics and management science can be used to identi-
fy possibilities and results. The same concepts can be applied
to software development. Normally for small projects it is
highly improbable that data is kept in the same way as it is
done for larger projects. If software developers, analysts and
teams keep proper records, it could be possible to identify
causes of project failure. This can help to improve software
design and development strategies and address shortcomings
in software quality.

The second part of the solution implies identifying and de-
vising proper strategies to solve the problem. Unfortunately
this is a difficult task and there is no fixed solution that will
work in every case. It is impossible to guarantee a complete
success. The aspect of doing things in the right way has to be
embedded in the organization’s culture.

5 SOME ADHOC QUALITY ASSURANCE SUCCESS
FACTORS

The following are considerations that seem to have contribut-
ed to improving software quality in some aspect or another in
modern software development environments. These are
shown in fig. 2.

5.1 Use Principles of Agile Modeling
This can sound a bit contradictory because agile or lightweight
methods imply simplifying the work. However if Agile meth-
ods are properly examined, there are quality principles that
have to be applied for the successful implementation. Agile
modelling is not part of Agile methods. These are independent
notations which exists to support Agile methods.

Agile modelling is a process that can be used along with ag-
ile and lightweight solutions. Agile modelling implies that
agile can be improved by applying certain core principles and
diagrammatic notations to model a particular problem. The
focus is to simplify various problems.

Agile modelling is a process for modelling and document-
ing systems. It is based on these core principles:

i) Assure simplicity and travel light
ii) Embrace change
iii) Use incremental small changes
iv) Use exclusive models fit for purpose
v) Maximize stakeholder values and investment
vi) Create models in parallel
vii) Use simple tools and solutions

These methods can be further developed using the following
criteria:

i) Carry out verification using questionnaires based on
a scoring method

ii) Use expert judgment from external auditors and
senior experts looks for present/ presence of specific crite-

ria.

iii) QA measures are used to define quality charac

iv) Use a missing criteria method. Here the QA analyst
looks for present/ presence of specific criteria.

5.2 Use Architecure Centric
Software architectures serve as a blueprint for the system and
project developing it. In simple terms the architecture serves
to deploy the problem in order for obtaining a feasible solu-
tion [9],[10]. The architecture is like glue that holds the com-
plete structure together. Thus it is responsible for the vision
that unifies the different stages of the system development.
Modern systems are composed of a set of components that
interface together and allocate specific functionality fulfilling
certain rules. Decomposition can benefit from patterns used
for a given solution. The rules, decompositions and patterns
that are included in the architecture contribute to quality be-
cause they enforce compliance and structure. The concepts
underlying MDD (model-driven development), PIMs (plat-
form independent models) and CIMs (computation independ-
ent models), if properly understood are useful for quality at a
high level of abstraction [11]-[13].

5.3 Use Model Driven Approach Concepts
The following principles from model driven approaches are im-
perative for quality improvement [8], [9], [12],[13]:

i) Efficiency : implies the elimination of manual
work and errors, improves implementing UML models.

ii) Agility: Approach makes it possible to work in a
given way. It implies the quick development and testing
of the system from the requirements documentation.

iii) Flexibility in hardware platforms. This implies
testing the code even if the hardware is not yet available

5.4 Use Reliability Measures
Several different ways exist to measure reliability. Reliability
is not something that is normally measured for small projects
because in some occasions this has a limited importance.
However very simple things like an accuracy checklist or error
tolerance checklist can contribute to having proper measures
in place.

5.5 Use Correctness Measures
Correctness is not a simple measure. If it is given more im-

portance than necessary this can become a problem to the pro-
ject. Correctness depends on different stakeholder views. For
measuring simple forms of correctness, simple checklists and
scoring methods can be used.

Model completeness, user viewpoint checks, consistency
and user checklist and operability checklists are useful for im-
proving quality in software. The concept of a completeness
checklist can be extended to other parts of the software project
at different levels. These measures are not direct measures of
software quality, however they can contribute to indirect im-
provements in quality.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May-2015 444
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

5.6 Use Usability Measures
The usability factor is strongly dependent on the application
being developed. Usability is not straightforward to measure
and training or different user groups can have a different per-
ceptions of this. The concept of operability or usability
measures the simplicity of the system operations.
User friendliness and the level of skills required to operate a
system measure usability. Simplicity is important for having
good quality.
 Interoperability explains how the system can be operated
across different groups and platforms. All projects require a
reasonable amount of effort for their success. Systems need to
integrate with existing technologies and architectures whilst
satisfying the requirements of different stakeholders. Thus
quality must be included from the start and planning phase of
particular projects providing for better results whilst offering
something that is economically viable and sound. Usability is
related to interoperability, connectivity, user satisfaction max-
imization and maximizing the stakeholders value of the sys-
tem. The concepts of value added can be applied to usability
and the usefulness of the artifact. This can be extended to the
process for developing the artifact.

5.7 Create the Right Culture and Environment
The right culture is imperative for quality in agile methods
and small projects. Unfortunately creating the right culture is
not something that can be done overnight. The only way this
can be allowed to happen is through a sustained effort over a
long period of time.
 It is important that the appropriate culture exists even be-
fore starting any project. Without this culture it is impossible
to have proper quality in software projects.

6 RESULTS AND FINDINGS
The solutions, suggested in the problem solution do not imply
that there is a single right mix. These are generic solutions that
can be applied to any small project as required and are based
on common sense and sound principles. Considering a tradi-

tional approach, key concepts used here can be applied to
modern projects. But modern projects have more complexities
and intricacies because of different platforms, levels and com-
ponents that spawn across different levels. Thus architectural
features have to be considered.
 In a best practice approach these principles can be found to
have valid use. Modern lightweight development principles
focus on agile solutions, so agile modelling concepts like: trav-
el light, use models fit for purpose, use simple tools and solu-
tions, etc. are definitely important and useful. On their own
agile modelling can help to improve quality but other con-
cepts of measurement like score sheets and ranking metrics
can prove to be useful to give more tangible measurement to
the agile modeling.
 Modern software development is based on PIMs and MDE
(model driven engineering), hence focusing on an architecture
centric approach at the top level can help to improve the quali-
ty of the design and the actual system [14].
If an architecture centric approach is not used directly it
would still benefit to apply the concepts mentioned in this
work. These are adaptable to finding a better and more inte-
grated overall solution.
 Reliability measures can be used to overcome the perfor-
mance and correctness problems in the system. This is a vast
topic. This paper has just skimmed the surface.
Usability is another important attribute. It is possible to have
really good applications and development that have usability
problems. Usability on its own right can be very important
because it determines the success or the failure of the system.
It is the actual user who guarantees if a system is useful or not.
Creating the right culture follows from the other factors that
have been mentioned.

The usefulness of these key principles is observed in vari-
ous case studies. However these are not normally grouped
together. The success of projects is clearly determined by hav-
ing a systematic and structured approach. This maximizes the
stakeholder value.

For this work a basic questionnaire was given to a group of
software engineering students who had been familiarized with
agile and its notations. Some of the questions dealt with the
following issues: i) too much models create confusion to main-
tain, ii) extreme programming does not require any models,
iii) no single modelling approach can work for different prob-
lem domains, iv) good models should have strong visual ex-
pression etc.

 From the results it is obvious that Agile or lightweight
software development definitely requires models. On the oth-
er hand too many models create confusion.
If a similar questionnaire would be presented to industry
where small software projects are done it will probably gener-
ate similar results.

It is difficult to find the right mix or balance how to achieve
quality issues. These can considerably vary from one project to
another. Stakeholder groups can suggest different opinions as
to what type of quality is really important.
Thus the following observations have been reached:

i) Continued support for sustaining & improving
quality in small software engineering projects is needed

SOME ADHOC
QUALITY ASSURANCE

FACTORS

MODEL
DRIVEN

AGILE
MODELLING

ARCHITECTURE
CENTRIC

MEASURE
RELIABILITY

MEASURE
CORRECT

NESS

MEASURE
USABILITY

CREATE
RIGHT

CULTURE

Fig. 2. Several Quality Assurance (QA) Factors. This fig. briefly
shows the main factors that can affect QA for small projects. Each
factor is very vast and detailed.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May-2015 445
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

ii) Results might not be seen immediately

iii) Online stores or knowledge repositories where

valuable information and lessons learned can be stored for
future reference should be created

iv) A best practice approach culture should be created.

The fact that quality in software is intangible and abstract
makes it something very difficult to implement and complex
to measure. Unlike other engineering approaches where quali-
ty can be measured from the success or failure of a product
subject to a set of physical and functional examinations or tests
at the physical level, software cannot be examined in the same
way. Measurement principles mentioned in the solution are
applicable to a wide variety of small projects. The difficulty
with measurement in small projects is that, metrics are sel-
domly applied in this case.

6 CONCLUSIONS
It is possible to disagree to what quality actually is in small

projects. From the viewpoint of IT strategy, planning and
quality in software projects is imperative if the projects are to
succeed. If the concept of ‘value added’ is embraced quality is
a must.

As time passes in an organization, more experience and
ground is gained in what quality implies and means for the
organization. From the perspective of agile and lightweight
methods, quality has to become part of the culture that per-
vades every level of the software process. This cannot happen
overnight. Having more complex choices and outcomes and
different forms of leadership and planning means that there is
the need for simplifying and unifying principles that will al-
low the correct implementation of quality factors.

REFERENCES
[1] W.E. Perry, “Quality Assurance for Information Systems: Methods, Tools and Tech-

niques”, Wiley & Sons.: NY ,pp. 361-395 1991.
[2] P. Clements, L. Bass, R. Kazman and G. Abowd, “Predicting Software

Quality by Architecture-Level Evaluation”,5th Int. conf. on Software
Quality, vol 5, no 0, Austin, TX, pp. 485-497, 1995. (QICID: 11205,
ASQC)

[3] L. Bass, P. Clements and R. Kazman, “Software Architectures in Prac-
tice”, Addison Wesley, 2006.

[4] M. Aleksy, “Coverage of Design for Service Principles in Software
Engineering”, 6th Int. Conf. on Complex, Intelligent, and Software Inten-
sive Systems (CISIS), Palermo, Italy, pp. 100-105, 2012.

[5] G. Booch, “The Defenestration of Superfluous Architectural Accou-
trements”, IEEE Software Domain Specific Languages and Modelling, vol
l 26, no 4, pp. 7-8, 2009.

[6] L. Cao, B. Ramesh and M. Rossi, “Are Domain-Specific Models Easier
to Maintain than UML Models?”,IEEE Software Domain Specific Lan-
guages and Modelling, vo.l 26., no. 4., pp. 19-21, 2009.

[7] R. Collier, G. O’Hare andC. Rooney. “A UML-based Software Engi-
neering Methodology for Agent Factory”, Int. Conf. on Software Eng.

And Knowledge Eng. (SEKE), pp.25-30, 2004.
[8] M.A. Jeusfeld, M. Jarke, and J. Mylopoulos, “Metamodelling for Method

Engineering”, MIT press 1st ed., 2009.
[9] M.A. Jeusfeld, M. Jarke, H.W. Nissen and M. Staudt, “ConceptBase

Managing Conceptual Models about Information Systems, Handbook on
Architectures of Information Systems”, Springer, ch. 12, pp. 265-285,
1998.

[10] D.L. Moody, “The Physics of Notations: Towards a Scientific Basis
for Constructing Visuals in Software Engineering”, IEEE trans. On
Software Eng., vol 35, no 6, pp. 756-779, 2009.

[11] J.A. Stone, E. Madigan, “Inconsistencies and Disconnects”, Communi-
cations of the ACM, vol.5, no 4, pp. 76-79, 2007.

[12] OMG, MDA - The Architecture of Choice for a Changing World
(2013), OMG Documentation Website: http://www.omg.org/mda

[13] A. Mattsson, B. Lundell, B. Lings, B. Fitzgerald, “Linking Model
Driven Development and Software Architecture: A Case Study”,
IEEE Transactions on Software Engineering ,Vol 35 , Issue 1, pp.83-93,
2009.

[14] A. Van Lamsweerde, “Requirements Engineering: From System Goals to
UML Models to Software Specifications”, Wiley, 2009.

IJSER

http://www.ijser.org/
http://www.omg.org/mda

	1 Introduction
	2 Background Information
	2.1 Basic Quality Assurance Objectives
	2.2 Intangible Quality Assurance Objectives
	2.3 Quality Assurance in Traditional Software Development
	2.4 Agile Methods

	3 Problem Definition
	4 Proposed Solutions
	5 Some Adhoc Quality Assurance Success Factors
	5.1 Use Principles of Agile Modeling
	5.2 Use Architecure Centric
	5.3 Use Model Driven Approach Concepts
	5.4 Use Reliability Measures
	5.5 Use Correctness Measures

	6 Results and Findings
	6 Conclusions
	References

